Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
2.
Heliyon ; 10(3): e24586, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38322899

ABSTRACT

Background: Advancing age is one of the independent risk factors for cardiovascular disorders. The Compendium of Materia Medica, a classic book on traditional Chinese medicine, states that ginseng "harmonizes the five internal organs, calming the spirit and prolonging the years of life." Considered one of the primary bioactive compounds derived from Panax ginseng, ginsenoside Rb1 (g-Rb1) has been scientifically suggested to possess anti-senescence efficacy. More research is needed to explore the vascular pharmacological activity and potential clinical application value of g-Rb1. Aims of the study: Our previous study demonstrated that g-Rb1 could mitigate cellular senescence via the SIRT1/eNOS pathway. This study was performed to explore the exact mechanisms by which g-Rb1 modulates the SIRT1/eNOS pathway. Materials and methods: We used human primary umbilical vein endothelial cells (HUVECs) to establish a replicative ageing model. Real-time (RT‒PCR), western blotting, small interfering RNA (siRNA), and immunoprecipitation were conducted to detect the effect of g-Rb1 on the SIRT1/caveolin-1/eNOS axis. Results: G-Rb1 increased NO production and alleviated replicative senescence of HUVECs. The application of g-Rb1 elevated the mRNA and protein abundance of both SIRT1 and eNOS while concomitantly suppressing the expression of caveolin-1. Inhibition of SIRT1 and eNOS by siRNAs suppressed the anti-senescence function of g-Rb1, while caveolin-1 siRNA could enhance it. G-Rb1 decreased the acetylation level of caveolin-1 and increased NO production, which was suppressed by SIRT1 siRNA. Both g-Rb1 and caveolin-1 siRNA could reduce the acetylation level of eNOS and increase NO production. Conclusion: G-Rb1 prevents age-related endothelial senescence by modulating the SIRT1/caveolin-1/eNOS signaling pathway.

3.
J Mol Cell Cardiol ; 187: 51-64, 2024 02.
Article in English | MEDLINE | ID: mdl-38171043

ABSTRACT

Senescence of vascular smooth muscle cells (VSMCs) is a key contributor to plaque vulnerability in atherosclerosis (AS), which is affected by endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) production. However, the crosstalk between ER stress and ROS production in the pathogenesis of VSMC senescence remains to be elucidated. ER-associated degradation (ERAD) is a complex process that clears unfolded or misfolded proteins to maintain ER homeostasis. HRD1 is the major E3 ligase in mammalian ERAD machineries that catalyzes ubiquitin conjugation to the unfolded or misfolded proteins for degradation. Our results showed that HRD1 protein levels were reduced in human AS plaques and aortic roots from ApoE-/- mice fed with high-fat diet (HFD), along with the increased ER stress response. Exposure to cholesterol in VSMCs activated inflammatory signaling and induced senescence, while reduced HRD1 protein expression. CRISPR Cas9-mediated HRD1 knockout (KO) exacerbated cholesterol- and thapsigargin-induced cell senescence. Inhibiting ER stress with 4-PBA (4-Phenylbutyric acid) partially reversed the ROS production and cell senescence induced by HRD1 deficiency in VSMCs, suggesting that ER stress alone could be sufficient to induce ROS production and senescence in VSMCs. Besides, HRD1 deficiency led to mitochondrial dysfunction, and reducing ROS production from impaired mitochondria partly reversed HRD1 deficiency-induced cell senescence. Finally, we showed that the overexpression of HDR1 reversed cholesterol-induced ER stress, ROS production, and cellular senescence in VSMCs. Our findings indicate that HRD1 protects against senescence by maintaining ER homeostasis and mitochondrial functionality. Thus, targeting HRD1 function may help to mitigate VSMC senescence and prevent vascular aging related diseases. TRIAL REGISTRATION: A real-world study based on the discussion of primary and secondary prevention strategies for coronary heart disease, URL:https://www.clinicaltrials.gov, the trial registration number is [2022]-02-121-01.


Subject(s)
Atherosclerosis , Muscle, Smooth, Vascular , Animals , Humans , Mice , Atherosclerosis/metabolism , Cellular Senescence , Endoplasmic Reticulum Stress/physiology , Endoplasmic Reticulum-Associated Degradation , Mammals/metabolism , Muscle, Smooth, Vascular/metabolism , Proteins/metabolism , Reactive Oxygen Species/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
4.
Mol Cell Biochem ; 2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38145449

ABSTRACT

Phenotypic change of vascular smooth muscle cells (VSMCs) is the main contributor of vascular pathological remodeling in atherosclerosis. The endoplasmic reticulum (ER) is critical for maintaining VSMC function through elimination of misfolded proteins that impair VSMC cellular function. ER-associated degradation (ERAD) is an ER-mediated process that controls protein quality by clearing misfolded proteins. One of the critical regulators of ERAD is HRD1, which also plays a vital role in lipid metabolism. However, the function of HRD1 in VSMCs of atherosclerotic vessels remains poorly understood. The level of HRD1 expression was analyzed in aortic tissues of mice fed with a high-fat diet (HFD). The H&E and EVG (VERHOEFF'S VAN GIESON) staining were used to demonstrate pathological vascular changes. IF (immunofluorescence) and WB (western blot) were used to explore the signaling pathways in vivo and in vitro. The wound closure and transwell assays were also used to test the migration rate of VSMCs. CRISPR gene editing and transcriptomic analysis were applied in vitro to explore the cellular mechanism. Our data showed significant reduction of HRD1 in aortic tissues of mice under HFD feeding. VSMC phenotypic change and HRD1 downregulation were detected by cholesterol supplement. Transcriptomic and further analysis of HRD1-KO VSMCs showed that HRD1 deficiency induced the expression of genes related to ER stress response, proliferation and migration, but reduced the contractile-related genes in VSMCs. HRD1 deficiency also exacerbated the proliferation, migration and ROS production of VSMCs induced by cholesterol, which promoted the VSMC dedifferentiation. Our results showed that HRD1 played an essential role in the contractile homeostasis of VSMCs by negatively regulating ER stress response. Thus, HRD1 in VSMCs could serve as a potential therapeutic target in metabolic disorder-induced vascular remodeling.

5.
Chin J Nat Med ; 21(11): 830-841, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38035938

ABSTRACT

In the context of non-alcoholic fatty liver disease (NAFLD), characterized by dysregulated lipid metabolism in hepatocytes, the quest for safe and effective therapeutics targeting lipid metabolism has gained paramount importance. Sanhuang Xiexin Tang (SXT) and Baihu Tang (BHT) have emerged as prominent candidates for treating metabolic disorders. SXT combined with BHT plus Cangzhu (SBC) has been used clinically for Weihuochisheng obese patients. This retrospective analysis focused on assessing the anti-obesity effects of SBC in Weihuochisheng obese patients. We observed significant reductions in body weight and hepatic lipid content among obese patients following SBC treatment. To gain further insights, we investigated the effects and underlying mechanisms of SBC in HFD-fed mice. The results demonstrated that SBC treatment mitigated body weight gain and hepatic lipid accumulation in HFD-fed mice. Pharmacological network analysis suggested that SBC may affect lipid metabolism, mitochondria, inflammation, and apoptosis-a hypothesis supported by the hepatic transcriptomic analysis in HFD-fed mice treated with SBC. Notably, SBC treatment was associated with enhanced hepatic mitochondrial biogenesis and the inhibition of the c-Jun N-terminal kinase (JNK)/nuclear factor-kappa B (NF-κB) and extracellular signal-regulated kinase (ERK)/NF-κB pathways. In conclusion, SBC treatment alleviates NAFLD in both obese patients and mouse models by improving lipid metabolism, potentially through enhancing mitochondrial biogenesis. These effects, in turn, ameliorate inflammation in hepatocytes.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , NF-kappa B/metabolism , Organelle Biogenesis , Retrospective Studies , Mice, Inbred C57BL , Obesity/drug therapy , Obesity/metabolism , Liver , Inflammation/drug therapy , Inflammation/metabolism , Body Weight , Lipid Metabolism , Lipids , Diet, High-Fat/adverse effects
6.
BMJ Open ; 13(7): e072541, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37433737

ABSTRACT

INTRODUCTION: Percutaneous coronary intervention (PCI)-related myocardial infarction (type 4a MI) and major periprocedural myocardial injury have been demonstrated leading to poor prognosis of patients with coronary heart disease (CHD) undergoing elective PCI and still remain high occurrence even after the therapy of dual antiplatelet agents and statins. Proprotein convertase subtilisin/kexin type 9 inhibitor alirocumab has been shown to be effectively in reducing the risk of acute MI (AMI). However, the effect of alirocumab on preventing PCI-related MI or major periprocedural myocardial injury in patients with CHD undergoing elective PCI remains uncertain. METHODS AND ANALYSIS: Alirocumab effect on Preventing Periprocedural ischaemic Events in coronary heart diseAse patients undergoing coronary StEnting trial is a multicentre, open-label, randomised controlled trial aiming to determine whether alirocumab could reduce the incidence of type 4a MI or major periprocedural myocardial injury in patients with CHD undergoing elective PCI. In total, 422 non-AMI CHD patients planned to undergo elective PCI will be randomly assigned to receive standard pharmacotherapy of CHD (control group) or additional use of subcutaneous alirocumab 75 mg 1 day before procedure (alirocumab group). The primary outcome is type 4a MI or major periprocedural myocardial injury defined as high-sensitivity cardiac troponin elevating above 5×99 th percentile upper reference limit in 48 hours after PCI. Patients will continue receiving standard pharmacotherapy or additional biweekly subcutaneous alirocumab 75 mg for 3 months according to the initial randomisation group. We will follow up for 3 months and record all the major adverse cardiovascular events (MACEs). Incidence of PCI-related MI or major periprocedural myocardial injury, and MACE in 3 months after PCI will be compared between control group and alirocumab group. ETHICS AND DISSEMINATION: Ethics approval has been obtained from the Medical Ethics Committee of the Third Affiliated Hospital of Sun Yat-sen University with approval number: (2022)02-140-01. The results of this study will be reported through peer-reviewed journals and conference presentations. TRIAL REGISTRATION NUMBER: ChiCTR2200063191.


Subject(s)
Coronary Disease , Myocardial Infarction , Percutaneous Coronary Intervention , Humans , Antibodies, Monoclonal, Humanized/therapeutic use , Coronary Disease/complications , Coronary Disease/surgery , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
7.
Artif Intell Med ; 141: 102554, 2023 07.
Article in English | MEDLINE | ID: mdl-37295898

ABSTRACT

Secondary hypertension is associated with higher risks of target organ damage and cardiovascular and cerebrovascular disease events. Early aetiology identification can eliminate aetiologies and control blood pressure. However, inexperienced doctors often fail to diagnose secondary hypertension, and comprehensively screening for all causes of high blood pressure increases health care costs. To date, deep learning has rarely been involved in the differential diagnosis of secondary hypertension. Relevant machine learning methods cannot combine textual information such as chief complaints with numerical information such as the laboratory examination results in electronic health records (EHRs), and the use of all features increases health care costs. To reduce redundant examinations and accurately identify secondary hypertension, we propose a two-stage framework that follows clinical procedures. The framework carries out an initial diagnosis process in the first stage, on which basis patients are recommended for disease-related examinations, followed by differential diagnoses of different diseases based on the different characteristics observed in the second stage. We convert the numerical examination results into descriptive sentences, thus blending textual and numerical characteristics. Medical guidelines are introduced through label embedding and attention mechanisms to obtain interactive features. Our model was trained and evaluated using a cross-sectional dataset containing 11,961 patients with hypertension from January 2013 to December 2019. The F1 scores of our model were 0.912, 0.921, 0.869 and 0.894 for primary aldosteronism, thyroid disease, nephritis and nephrotic syndrome and chronic kidney disease, respectively, which are four kinds of secondary hypertension with high incidence rates. The experimental results show that our model can powerfully use the textual and numerical data contained in EHRs to provide effective decision support for the differential diagnosis of secondary hypertension.


Subject(s)
Deep Learning , Hypertension , Humans , Diagnosis, Differential , Cross-Sectional Studies , Hypertension/diagnosis , Hypertension/epidemiology , Machine Learning
8.
Nat Commun ; 14(1): 2656, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37160898

ABSTRACT

Two common features of dietary polyphenols have hampered our mechanistic understanding of their beneficial effects for decades: targeting multiple organs and extremely low bioavailability. We show here that resveratrol intervention (REV-I) in high-fat diet (HFD)-challenged male mice inhibits chylomicron secretion, associated with reduced expression of jejunal but not hepatic scavenger receptor class B type 1 (SR-B1). Intestinal mucosa-specific SR-B1-/- mice on HFD-challenge exhibit improved lipid homeostasis but show virtually no further response to REV-I. SR-B1 expression in Caco-2 cells cannot be repressed by pure resveratrol compound while fecal-microbiota transplantation from mice on REV-I suppresses jejunal SR-B1 in recipient mice. REV-I reduces fecal levels of bile acids and activity of fecal bile-salt hydrolase. In Caco-2 cells, chenodeoxycholic acid treatment stimulates both FXR and SR-B1. We conclude that gut microbiome is the primary target of REV-I, and REV-I improves lipid homeostasis at least partially via attenuating FXR-stimulated gut SR-B1 elevation.


Subject(s)
Chylomicrons , Polyphenols , Male , Animals , Mice , Humans , Resveratrol/pharmacology , Caco-2 Cells , Receptors, Scavenger
9.
Nutrients ; 15(4)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36839190

ABSTRACT

Brussels chicory, a typical vegetable in Mediterranean diets, has been recently reported to stabilize advanced atherosclerotic plaques in the brachiocephalic artery of apoE-deficient (Apoe-/-) mice. Herein, we investigated whether Brussels chicory can stabilize advanced plaques in the aorta via improving oxidative stress. Thirty week old Apoe-/- mice were fed the AIN-93G diet or supplemented with 0.5% freeze-dried Brussels chicory for twenty weeks. Aortic plaque size and stability, aortic relaxation, monocyte adhesion to aortic endothelium, free radicals, and enzymatic and non-enzymatic factors involved in free radical production and elimination in aorta and serum were measured. Brussels chicory consumption did not alter aortic plaque size, however, it stabilized aortic plaques, promoted aortic relaxation, and also inhibited monocyte adhesion to aortic endothelium. Moreover, this administration reduced oxidized LDL (ox-LDL) and 4-hydroxynonenal (4-HNE) content in aortic plaques, associated with inhibited aortic NADPH oxidase (NOX) and uncoupled endothelial nitric oxide synthase (eNOS)-mediated free radical production. However, Brussels chicory consumption did not appreciably alter aortic and serum superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities, aortic glutathione (GSH), as well as serum non-enzymatic antioxidants, such as bilirubin, uric acid, and GSH. Collectively, improved oxidative stress might contribute to the atheroprotective effect of Brussels chicory, supporting the prospect of the antioxidant therapy in advanced atherosclerosis progression.


Subject(s)
Atherosclerosis , Cichorium intybus , Diet, Mediterranean , Plaque, Atherosclerotic , Animals , Mice , Antioxidants/metabolism , Cichorium intybus/chemistry , Glutathione , Oxidative Stress , Vegetables/metabolism , Mice, Knockout, ApoE
10.
J Clin Med ; 11(18)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36143055

ABSTRACT

Electrocardiogram (ECG) is an important tool for the detection of acute ST-segment elevation myocardial infarction (STEMI). However, machine learning (ML) for the diagnosis of STEMI complicated with arrhythmia and infarct-related arteries is still underdeveloped based on real-world data. Therefore, we aimed to develop an ML model using the Least Absolute Shrinkage and Selection Operator (LASSO) to automatically diagnose acute STEMI based on ECG features. A total of 318 patients with STEMI and 502 control subjects were enrolled from Jan 2017 to Jun 2019. Coronary angiography was performed. A total of 180 automatic ECG features of 12-lead ECG were input into the model. The LASSO regression model was trained and validated by the internal training dataset and tested by the internal and external testing datasets. A comparative test was performed between the LASSO regression model and different levels of doctors. To identify the STEMI and non-STEMI, the LASSO model retained 14 variables with AUCs of 0.94 and 0.93 in the internal and external testing datasets, respectively. The performance of LASSO regression was similar to that of experienced cardiologists (AUC: 0.92) but superior (p < 0.05) to internal medicine residents, medical interns, and emergency physicians. Furthermore, in terms of identifying left anterior descending (LAD) or non-LAD, LASSO regression achieved AUCs of 0.92 and 0.98 in the internal and external testing datasets, respectively. This LASSO regression model can achieve high accuracy in diagnosing STEMI and LAD vessel disease, thus providing an assisting diagnostic tool based on ECG, which may improve the early diagnosis of STEMI.

11.
Front Cardiovasc Med ; 9: 952089, 2022.
Article in English | MEDLINE | ID: mdl-36035939

ABSTRACT

Background: Current electrocardiogram (ECG) criteria of left ventricular hypertrophy (LVH) have low sensitivity. Deep learning (DL) techniques have been widely used to detect cardiac diseases due to its ability of automatic feature extraction of ECG. However, DL was rarely applied in LVH diagnosis. Our study aimed to construct a DL model for rapid and effective detection of LVH using 12-lead ECG. Methods: We built a DL model based on convolutional neural network-long short-term memory (CNN-LSTM) to detect LVH using 12-lead ECG. The echocardiogram and ECG of 1,863 patients obtained within 1 week after hospital admission were analyzed. Patients were evenly allocated into 3 sets at 3:1:1 ratio: the training set (n = 1,120), the validation set (n = 371) and the test set 1 (n = 372). In addition, we recruited 453 hospitalized patients into the internal test set 2. Different DL model of each subgroup was developed according to gender and relative wall thickness (RWT). Results: The LVH was predicted by the CNN-LSTM model with an area under the curve (AUC) of 0.62 (sensitivity 68%, specificity 57%) in the test set 1, which outperformed Cornell voltage criteria (AUC: 0.57, sensitivity 48%, specificity 72%) and Sokolow-Lyon voltage (AUC: 0.51, sensitivity 14%, specificity 96%). In the internal test set 2, the CNN-LSTM model had a stable performance in predicting LVH with an AUC of 0.59 (sensitivity 65%, specificity 57%). In the subgroup analysis, the CNN-LSTM model predicted LVH by 12-lead ECG with an AUC of 0.66 (sensitivity 72%, specificity 60%) for male patients, which performed better than that for female patients (AUC: 0.59, sensitivity 50%, specificity 71%). Conclusion: Our study established a CNN-LSTM model to diagnose LVH by 12-lead ECG with higher sensitivity than current ECG diagnostic criteria. This CNN-LSTM model may be a simple and effective screening tool of LVH.

12.
Can J Diabetes ; 46(3): 216-224.e2, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35568421

ABSTRACT

OBJECTIVES: Semaglutide and liraglutide are glucagon-like peptide-1 (GLP-1)-based diabetes drugs. Semaglutide possesses a longer half-life. Utilizing relatively lower doses, we compared the beneficial metabolic effects of these 2 drugs in mice fed a high-fat diet (HFD), aiming to deepen our mechanistic understanding on their energy homeostatic functions. METHODS: Male C57BL/6J mice were fed an HFD for 10 weeks, followed by daily phosphate-buffered saline (PBS, as control); liraglutide (150 µg/kg body weight); or semaglutide (12 µg/kg body weight, low dose [LD]; or 60 µg/kg body weight, high dose [HD]) injection for 4 weeks. Metabolic tolerance and other tests were conducted within the 4-week period. Expression of metabolism-related genes, including Fgf21 in the liver and adipose tissues, was assessed after mice were euthanized. RESULTS: HFD-induced body weight gain, increasing inguinal fat tissue mass, glucose defects and insulin intolerance were effectively and comparably attenuated in the 3 experimental groups. HD semaglutide showed an even better effect on attenuating hyperleptinemia. Liraglutide but not semaglutide treatment enhanced hepatic fibroblast growth factor 21 (FGF21) protein level. All 3 experimental groups showed elevated expression of genes that encode pyruvate dehydrogenase kinase 4 and enoyl-CoA hydratase and 3-hydroxyacyl-coenzyme A dehydrogenase, associated with reduced plasma triglyceride levels. Finally, the plasma "GLP-1" level in HD semaglutide-treated mice was 14-fold higher than in HFD-fed control mice. CONCLUSIONS: Liraglutide, but not semaglutide, increased hepatic FGF21 protein level, whereas semaglutide had a greater effect on attenuating hyperleptinemia. Thus, these 2 GLP-1-based diabetes drugs may target metabolic organs, including liver and adipose tissue, with differing levels of efficacy.


Subject(s)
Diabetes Mellitus , Liraglutide , Animals , Body Weight , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/pharmacology , Glucagon-Like Peptides , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Liraglutide/pharmacology , Liraglutide/therapeutic use , Male , Mice , Mice, Inbred C57BL
13.
Front Cardiovasc Med ; 9: 797207, 2022.
Article in English | MEDLINE | ID: mdl-35360023

ABSTRACT

Early diagnosis of acute ST-segment elevation myocardial infarction (STEMI) and early determination of the culprit vessel are associated with a better clinical outcome. We developed three deep learning (DL) models for detecting STEMIs and culprit vessels based on 12-lead electrocardiography (ECG) and compared them with conclusions of experienced doctors, including cardiologists, emergency physicians, and internists. After screening the coronary angiography (CAG) results, 883 cases (506 control and 377 STEMI) from internal and external datasets were enrolled for testing DL models. Convolutional neural network-long short-term memory (CNN-LSTM) (AUC: 0.99) performed better than CNN, LSTM, and doctors in detecting STEMI. Deep learning models (AUC: 0.96) performed similarly to experienced cardiologists and emergency physicians in discriminating the left anterior descending (LAD) artery. Regarding distinguishing RCA from LCX, DL models were comparable to doctors (AUC: 0.81). In summary, we developed ECG-based DL diagnosis systems to detect STEMI and predict culprit vessel occlusion, thus enhancing the accuracy and effectiveness of STEMI diagnosis.

14.
ESC Heart Fail ; 9(4): 2336-2347, 2022 08.
Article in English | MEDLINE | ID: mdl-35437939

ABSTRACT

AIMS: Available evidence is incomplete and inconsistent in the outcomes of heart failure (HF) patients with preserved ejection fraction (HFpEF), mildly reduced ejection fraction (HFmrEF), and reduced ejection fraction (HFrEF). There are also limited data on the proportions and long-term prognosis among the three HF phenotypes in China. We aimed to characterize the 5 year prognosis in three HF phenotypes according to EF in a cohort of hospitalized HF patients undergoing coronary angiography in southern China. METHODS AND RESULTS: Hospitalized patients with HF were enrolled from the Cardiorenal ImprovemeNt registry (CIN; ClinicalTrials.gov NCT04407936) between January 2007 and December 2014. HF phenotypes were defined as HFpEF (EF ≥ 50%), HFmrEF (EF 41-49%), and HFrEF (EF ≤ 40%). Kaplan-Meier and Cox proportional hazards models were constructed to examine differences in 5 year outcomes in HF patients with different phenotypes. A total of 4880 HF patients [mean age: 61.8 ± 10.3, male: 3156 (64.7%)] were included: 2768 (57%) had HFpEF, 1015 (21%) had HFmrEF, and 1097 (22%) had HFrEF. Patients with HFrEF were older than those with HFpEF (62.5 ± 10.6 vs. 61.3 ± 10.1, P < 0.001) and more likely to be male (78.0% vs. 55.9%, P < 0.001). With 5 year follow-up through the end of December 2019, 1624 (27.6%) patients died. Controlling confounding variables, declined EF category was independently associated with increased 5 year mortality {HFrEF 25.2% vs. HFpEF 13.4%, adjusted hazard ratio [aHR]: 1.85 [95% confidence interval (CI): 1.45 to 2.35]; HFmrEF 18.1% vs. HFpEF 13.4%, aHR: 1.40 [95% CI: 1.08 to 1.81]; HFrEF 25.2% vs. HFmrEF 18.1%, aHR: 1.32 [95% CI: 1.02 to 1.71]}. CONCLUSIONS: In this Chinese cohort, patients with HFrEF account for less than a fourth of HF patients. One-sixth individuals with HF died in 5 years. HFrEF was associated with a nearly two-fold increased risk of 5 year mortality than HFpEF. Further studies are needed to prospectively evaluate the efficacy of improving treatment on outcomes in all three HF phenotypes.


Subject(s)
Heart Failure , Female , Heart Failure/therapy , Hospitalization , Humans , Male , Risk Factors , Stroke Volume , Ventricular Function, Left
15.
Front Cardiovasc Med ; 9: 820178, 2022.
Article in English | MEDLINE | ID: mdl-35282383

ABSTRACT

Background: Definitions of declined left ventricular ejection fraction (LVEF) vary across studies and research results concerning the association of mortality with declined LVEF are inconsistent. Thus, this study aimed to assess the impact of early worsening LVEF on mortality in patients with heart failure (HF) with preserved ejection fraction (HFpEF) and to establish independent predictors of early worsening LVEF. Methods and Results: A total of 1,418 consecutive patients with HFpEF with LVEF remeasurement from the Cardiorenal Improvement registry were included in this study. Worsening LVEF was defined as an absolute decline ≥ 5% from baseline LVEF within 3 to 12 months after discharge. The Cox and logistic regression analyses were performed to assess prognostic effects and predictors for worsening LVEF, respectively. Among 1,418 patients with HFpEF, 457 (32.2%) patients exhibited worsening LVEF. During a median follow-up of 3.2 years (interquartile range: 2.3-4.0 years), 92 (6.5%) patients died. Patients with HFpEF with worsening LVEF had higher mortality relative to those with nonworsening LVEF [9.2 vs. 5.2%; adjusted hazard ratio (aHR): 2.18, 95% CI: 1.35-3.52]. In the multivariate binary logistic regression analysis, baseline left ventricular end-diastolic dimension (LVEDD), LVEF, high-density lipoprotein cholesterol (HDL-C), atrial fibrillation (AF), and diabetes mellitus (DM) emerged as predictive factors of worsening LVEF. Conclusion: This study demonstrated that about one out of three patients with HFpEF experiences worsening LVEF during follow-up, which is associated with 2.2-fold increased mortality. Increased LVEDD and LVEF, low HDL-C levels, AF, and DM were predictors of worsening LVEF. Further studies are needed to prospectively assess the efficacy of early active management on prognosis in patients with HF with worsening LVEF. Registration: ClinicalTrials.gov, identifier NCT04407936.

16.
Math Biosci Eng ; 18(6): 7774-7789, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34814275

ABSTRACT

Cardiovascular and cerebrovascular diseases are leading causes of death worldwide, accounting for more than 40% of all deaths in China. Acute myocardial infarction (AMI) is a common cardiovascular disease and traditionally divided into ST-segment (STEMI) and non-ST-segment elevation myocardial infarction (NSTEMI), which are known with different prognoses and treatment strategies. However, key regulatory genes and pathways involved in AMI that may be used as potential biomarker for prognosis are unknown. In this study, we employed both bulk and single-cell RNA-seq to construct gene regulatory networks and cell-cell communication networks. We first constructed weighted gene co-expression networks for differential expressed genes between STEMI and NSTEMI patients based on whole-blood RNA-seq transcriptomics. Network topological attributes (e.g., node degree, betweenness) were analyzed to identify key genes involved in different functional network modules. Furthermore, we used single-cell RNA-seq data to construct multilayer signaling network to infer regulatory mechanisms of the above key genes. PLAUR (receptor for urokinase plasminogen activator) was found to play a vital role in transducing inter-cellular signals from endothelial cells and fibroblast cells to intra-cellular pathways of myocardial cells, leading to gene expression involved in cellular response to hypoxia. Our study sheds lights on identifying molecular biomarkers for diagnosis and prognosis of AMI, and provides candidate key regulatory genes for further experimental validation.


Subject(s)
Myocardial Infarction , Non-ST Elevated Myocardial Infarction , Endothelial Cells , Gene Regulatory Networks , Humans , Myocardial Infarction/genetics , RNA-Seq
17.
Pharm Biol ; 59(1): 1369-1377, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34629012

ABSTRACT

CONTEXT: Ginsenoside Rb1 (Rb1) exerts many beneficial effects and protects against cardiovascular disease. OBJECTIVE: To investigate whether Rb1 could attenuate age-related vascular impairment and identify the mechanism. MATERIALS AND METHODS: Female C57BL/6J mice aged 2 and 18 months, randomly assigned to Young, Young + 20 mg/kg Rb1, Old + vehicle, Old + 10 mg/kg Rb1 and Old + 20 mg/kg Rb1 groups, were daily intraperitoneal injected with vehicle or Rb1 for 3 months. The thoracic aorta segments were used to inspect the endothelium-dependent vasorelaxation. Left thoracic aorta tissues were collected for histological or molecular expression analyses, including ageing-related proteins, markers relevant to calcification and fibrosis, and expression of Gas6/Axl. RESULTS: We found that in Old + vehicle group, the expression of senescence proteins and cellular adhesion molecules were significantly increased, with worse endothelium-dependent thoracic aorta relaxation (58.35% ± 2.50%) than in Young group (88.84% ± 1.20%). However, Rb1 treatment significantly decreased the expression levels of these proteins and preserved endothelium-dependent relaxation in aged mice. Moreover, Rb1 treatment also reduced calcium deposition, collagen deposition, and the protein expression levels of collagen I and collagen III in aged mice. Furthermore, we found that the downregulation of Gas6 protein expression by 41.72% and mRNA expression by 52.73% in aged mice compared with young mice was abrogated by Rb1 treatment. But there was no significant difference on Axl expression among the groups. CONCLUSIONS: Our study confirms that Rb1 could ameliorate vascular injury, suggesting that Rb1 might be a potential anti-ageing related vascular impairment agent.


Subject(s)
Aging/drug effects , Ginsenosides/pharmacology , Intercellular Signaling Peptides and Proteins/genetics , Vascular Diseases/prevention & control , Age Factors , Aging/pathology , Animals , Aorta, Thoracic/drug effects , Aorta, Thoracic/metabolism , Dose-Response Relationship, Drug , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Female , Gene Expression Regulation/drug effects , Ginsenosides/administration & dosage , Mice , Mice, Inbred C57BL , RNA, Messenger/metabolism , Vasodilation/drug effects
19.
Hepatology ; 74(4): 2154-2169, 2021 10.
Article in English | MEDLINE | ID: mdl-33851458

ABSTRACT

BACKGROUND AND AIMS: Several studies have shown that expression of hepatic fibroblast growth factor 21 (FGF21) can be stimulated by glucagon-like peptide 1 (GLP-1)-based diabetes drugs. As GLP-1 receptor (GLP-1R) is unlikely to be expressed in hepatocytes, we aimed to compare such stimulation in mice and in mouse hepatocytes, determine the involvement of GLP-1R, and clarify whether FGF21 mediates certain functions of the GLP-1R agonist liraglutide. APPROACH AND RESULTS: Liver FGF21 expression was assessed in mice receiving a daily liraglutide injection for 3 days or in mouse primary hepatocytes (MPHs) undergoing direct liraglutide treatment. The effects of liraglutide on metabolic improvement and FGF21 expression were then assessed in high-fat diet (HFD)-fed mice and compared with the effects of the dipeptidyl-peptidase 4 inhibitor sitagliptin. Animal studies were also performed in Glp1r-/- mice and liver-specific FGF21-knockout (lFgf21-KO) mice. In wild-type mouse liver that underwent RNA sequencing and quantitative reverse-transcription PCR, we observed liraglutide-stimulated hepatic Fgf21 expression and a lack of Glp1r expression. In MPHs, liraglutide did not stimulate Fgf21. In mice with HFD-induced obesity, liraglutide or sitagliptin treatment reduced plasma triglyceride levels, whereas their effect on reducing body-weight gain was different. Importantly, increased hepatic FGF21 expression was observed in liraglutide-treated mice but was not observed in sitagliptin-treated mice. In HFD-fed Glp1r-/- mice, liraglutide showed no beneficial effects and could not stimulate Fgf21 expression. In lFgf21-KO mice undergoing dietary challenge, the body-weight-gain attenuation and lipid homeostatic effects of liraglutide were lost or significantly reduced. CONCLUSIONS: We suggest that liraglutide-stimulated hepatic Fgf21 expression may require GLP-1R to be expressed in extrahepatic organs. Importantly, we revealed that hepatic FGF21 is required for liraglutide to lower body weight and improve hepatic lipid homeostasis. These observations advanced our mechanistic understanding of the function of GLP-1-based drugs in NAFLD.


Subject(s)
Fibroblast Growth Factors/metabolism , Glucagon-Like Peptide-1 Receptor , Hepatocytes , Liraglutide/pharmacology , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Cells, Cultured , Diet, High-Fat/methods , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Disease Models, Animal , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Hypoglycemic Agents/pharmacology , Lipid Metabolism/drug effects , Mice , Mice, Knockout , Sitagliptin Phosphate/pharmacology
20.
Chin J Integr Med ; 27(5): 336-344, 2021 May.
Article in English | MEDLINE | ID: mdl-33420900

ABSTRACT

OBJECTIVE: To investigate whether ginsenoside Rb1 (Rb1) can protect human umbilical vein endothelial cells (HUVECs) against high glucose-induced apoptosis and examine the underlying mechanism. METHODS: HUVECs were divided into 5 groups: control group (5.5 mmol/L glucose), high glucose (HG, 40 mmol/L) treatment group, Rb1 (50 µ mol/L) treatment group, Rb1 plus HG treatment group, and Rb1 and 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP, 16 µ mol/L) plus HG treatment group. Cell viability was evaluated by cell counting kit-8 assay. Mitochondrial and intracellular reactive oxygen species were detected by MitoSox Red mitochondrial superoxide indicator and dichloro-dihydro-fluorescein diacetate assay, respectively. Annexin V/propidium iodide staining and fluorescent dye staining were used to measure the apoptosis and the mitochondrial membrane potential of HUVECs, respectively. The protein expressions of apoptosis-related proteins [Bcl-2, Bax, cleaved caspase-3 and cytochrome c (Cyt-c)], mitochondrial biogenesis-related proteins [proliferator-activated receptor gamma coactivator 1-alpha, nuclear respiratory factor-1 and mitochondrial transcription factor A)], acetylation levels of forkhead box O3a and SOD2, and sirtuin-3 (SIRT3) signalling pathway were measured by immunoblotting and immunoprecipitation. RESULTS: Rb1 ameliorated survival in cells in which apoptosis was induced by high glucose (P<0.05 or P<0.01). Upon the addition of Rb1, mitochondrial and intracellular reactive oxygen species generation and malondialdehyde levels were decreased (P<0.01), while the activities of antioxidant enzymes were increased (P<0.05 or P<0.01). Rb1 preserved the mitochondrial membrane potential and reduced the release of Cyt-c from the mitochondria into the cytosol (P<0.01). In addition, Rb1 upregulated mitochondrial biogenesis-associated proteins (P<0.01). Notably, the cytoprotective effects of Rb1 were correlated with SIRT3 signalling pathway activation (P<0.01). The effect of Rb1 against high glucose-induced mitochondria-related apoptosis was restrained by 3-TYP (P<0.05 or P<0.01). CONCLUSION: Rb1 could protect HUVECs from high glucose-induced apoptosis by promoting mitochondrial function and suppressing oxidative stress through the SIRT3 signalling pathway.


Subject(s)
Mitochondria , Apoptosis , Endothelial Cells , Ginsenosides , Glucose/metabolism , Glucose/toxicity , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Retinoblastoma Binding Proteins/metabolism , Sirtuin 3 , Ubiquitin-Protein Ligases/metabolism , Umbilical Cord
SELECTION OF CITATIONS
SEARCH DETAIL
...